Getting Started - E2E Tutorial
End-to-End tutorial for LiteLLM Proxy to:
- Add an Azure OpenAI model
- Make a successful /chat/completion call
- Generate a virtual key
- Set RPM limit on virtual key
Pre-Requisites
- Install LiteLLM Docker Image OR LiteLLM CLI (pip package)
- Docker
- LiteLLM CLI (pip package)
docker pull ghcr.io/berriai/litellm:main-latest
$ pip install 'litellm[proxy]'
1. Add a model
Control LiteLLM Proxy with a config.yaml file.
Setup your config.yaml with your azure model.
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/my_azure_deployment
api_base: os.environ/AZURE_API_BASE
api_key: "os.environ/AZURE_API_KEY"
api_version: "2024-07-01-preview" # [OPTIONAL] litellm uses the latest azure api_version by default
Model List Specification
model_name
(str
) - This field should contain the name of the model as received.litellm_params
(dict
) See All LiteLLM Paramsmodel
(str
) - Specifies the model name to be sent tolitellm.acompletion
/litellm.aembedding
, etc. This is the identifier used by LiteLLM to route to the correct model + provider logic on the backend.api_key
(str
) - The API key required for authentication. It can be retrieved from an environment variable usingos.environ/
.api_base
(str
) - The API base for your azure deployment.api_version
(str
) - The API Version to use when calling Azure's OpenAI API. Get the latest Inference API version here.
Useful Links
- All Supported LLM API Providers (OpenAI/Bedrock/Vertex/etc.)
- Full Config.Yaml Spec
- Pass provider-specific params
2. Make a successful /chat/completion call
LiteLLM Proxy is 100% OpenAI-compatible. Test your azure model via the /chat/completions
route.
2.1 Start Proxy
Save your config.yaml from step 1. as litellm_config.yaml
.
- Docker
- LiteLLM CLI (pip package)
docker run \
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
-e AZURE_API_KEY=d6*********** \
-e AZURE_API_BASE=https://openai-***********/ \
-p 4000:4000 \
ghcr.io/berriai/litellm:main-latest \
--config /app/config.yaml --detailed_debug
# RUNNING on http://0.0.0.0:4000
$ litellm --config /app/config.yaml --detailed_debug
Confirm your config.yaml got mounted correctly
Loaded config YAML (api_key and environment_variables are not shown):
{
"model_list": [
{
"model_name ...
2.2 Make Call
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor. Guide the user through the solution step by step."
},
{
"role": "user",
"content": "how can I solve 8x + 7 = -23"
}
]
}'
Expected Response
{
"id": "chatcmpl-2076f062-3095-4052-a520-7c321c115c68",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "I am gpt-3.5-turbo",
"role": "assistant",
"tool_calls": null,
"function_call": null
}
}
],
"created": 1724962831,
"model": "gpt-3.5-turbo",
"object": "chat.completion",
"system_fingerprint": null,
"usage": {
"completion_tokens": 20,
"prompt_tokens": 10,
"total_tokens": 30
}
}
Useful Links
- All Supported LLM API Providers (OpenAI/Bedrock/Vertex/etc.)
- Call LiteLLM Proxy via OpenAI SDK, Langchain, etc.
- All API Endpoints Swagger
- Other/Non-Chat Completion Endpoints
- Pass-through for VertexAI, Bedrock, etc.
3. Generate a virtual key
Track Spend, and control model access via virtual keys for the proxy
3.1 Set up a Database
Requirements
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/my_azure_deployment
api_base: os.environ/AZURE_API_BASE
api_key: "os.environ/AZURE_API_KEY"
api_version: "2024-07-01-preview" # [OPTIONAL] litellm uses the latest azure api_version by default
general_settings:
master_key: sk-1234
database_url: "postgresql://<user>:<password>@<host>:<port>/<dbname>" # 👈 KEY CHANGE
Save config.yaml as litellm_config.yaml
(used in 3.2).
What is general_settings
?
These are settings for the LiteLLM Proxy Server.
See All General Settings here.
master_key
(str
)- Description:
- Set a
master key
, this is your Proxy Admin key - you can use this to create other keys (🚨 must start withsk-
).
- Set a
- Usage:
- Set on config.yaml set your master key under
general_settings:master_key
, example -master_key: sk-1234
- Set env variable set
LITELLM_MASTER_KEY
- Set on config.yaml set your master key under
- Description:
database_url
(str)- Description:
- Set a
database_url
, this is the connection to your Postgres DB, which is used by litellm for generating keys, users, teams.
- Set a
- Usage:
- Set on config.yaml set your master key under
general_settings:database_url
, example -database_url: "postgresql://..."
- Set
DATABASE_URL=postgresql://<user>:<password>@<host>:<port>/<dbname>
in your env
- Set on config.yaml set your master key under
- Description:
3.2 Start Proxy
docker run \
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
-e AZURE_API_KEY=d6*********** \
-e AZURE_API_BASE=https://openai-***********/ \
-p 4000:4000 \
ghcr.io/berriai/litellm:main-latest \
--config /app/config.yaml --detailed_debug
3.3 Create Key w/ RPM Limit
Create a key with rpm_limit: 1
. This will only allow 1 request per minute for calls to proxy with this key.
curl -L -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{
"rpm_limit": 1
}'
Expected Response
{
"key": "sk-12..."
}
3.4 Test it!
Use your virtual key from step 3.3
1st call - Expect to work!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-12...' \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor. Guide the user through the solution step by step."
},
{
"role": "user",
"content": "how can I solve 8x + 7 = -23"
}
]
}'
Expected Response
{
"id": "chatcmpl-2076f062-3095-4052-a520-7c321c115c68",
"choices": [
...
}
2nd call - Expect to fail!
Why did this call fail?
We set the virtual key's requests per minute (RPM) limit to 1. This has now been crossed.
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-12...' \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor. Guide the user through the solution step by step."
},
{
"role": "user",
"content": "how can I solve 8x + 7 = -23"
}
]
}'
Expected Response
{
"error": {
"message": "Max parallel request limit reached. Hit limit for api_key: daa1b272072a4c6841470a488c5dad0f298ff506e1cc935f4a181eed90c182ad. tpm_limit: 100, current_tpm: 29, rpm_limit: 1, current_rpm: 2.",
"type": "None",
"param": "None",
"code": "429"
}
}
Useful Links
- Creating Virtual Keys
- Key Management API Endpoints Swagger
- Set Budgets / Rate Limits per key/user/teams
- Dynamic TPM/RPM Limits for keys
Troubleshooting
Non-root docker image?
If you need to run the docker image as a non-root user, use this.
SSL Verification Issue / Connection Error.
If you see
ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self-signed certificate in certificate chain (_ssl.c:1006)
OR
Connection Error.
You can disable ssl verification with:
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/my_azure_deployment
api_base: os.environ/AZURE_API_BASE
api_key: "os.environ/AZURE_API_KEY"
api_version: "2024-07-01-preview"
litellm_settings:
ssl_verify: false # 👈 KEY CHANGE
What is litellm_settings
?
LiteLLM Proxy uses the LiteLLM Python SDK for handling LLM API calls.
litellm_settings
are module-level params for the LiteLLM Python SDK (equivalent to doing litellm.<some_param>
on the SDK). You can see all params here
Support & Talk with founders
Our emails ✉️ ishaan@berri.ai / krrish@berri.ai